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Epistemic Logic



Card Example

Three agents, , and , have each drawn one
card from a deck of {. ' Y

picked @@
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Card Example
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Card Example

Three agents, , and , have each drawn one
card from a deck of {' ' Y
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Card Example

Three agents, , and , have each drawn one
card from a deck of {' ' Y
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Card Example

Three agents, , and , have each drawn one
card from a deck of {' ' Y
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Card Example

Three agents, , and , have each drawn one
card from a deck of {' ' Y
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Epistemic Logic

From Greek that means knowledge

Language of EL 6L 2 ¢ :=p|-el(oA@) |, ¢

p
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Epistemic Logic

Language of EL &€Z 2 ¢ i=plel(oA@)| L, ¢

Epistemic  An M is a tuple (S, ~, V), where
models e S #£ (is a set of states;
e ~:A — 2°%%is an indistinguishability

function with each ~_, being an equivalence
relation;

e V: P — 2%isthe valuation function.
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Epistemic Logic
Epistemic  An epistemic model M is a tuple (S, ~, V), where
models e S #£ @ is a set of states;
25%5 is an indistinguishability

function with each ~, being an equivalence
relation;

e V: P — 2%is the valuation function.

e ~ A




A Quick Aside

An equivalence relation is a binary relation that is
and transitive.
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Epistemic Logic

From Greek that means knowledge

Language of EL €Z 2 ¢ i=plel(oA@)|L],¢

Epistemic  An M is a tuple (S, ~ , V), where
models e S #£ (is a set of states;
e ~:A — 2°%%is an indistinguishability

function with each ~_, being an equivalence
relation;

e V: P — 23isthe valuation function.

Pointed model A Pair of Mand s € §Sis called a
and is denoted as M,



Semantics of EL

M F p iffs € V(p)
M. F - iff M, F o

MFEpANy iff M Fpand M, Fy
M E[], @ iff VieS:s~_ timpliesM, F ¢

\)

\)

Note that Qago IS equivalent to —

M E O iffAteS:s~, tand M, E ¢

a 'Y

W V @ is equivalent to (A D @)
W — @ is equivalent to —y V @



Properties of Knowledge

. What is known is true

P = @is (is a law of EL)

Corresponds to

What do you think about belief?
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Properties of Knowledge

If | don’t know ¢, then | know that | don’t
Know @

—

. What is known is true

Il. Positive introspection

lll. Negative introspection

a® —

Corresponds to

a
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Properties of Knowledge

Truth of logical
laws |, Il, and Il

l. What is known is true
a® — @

Il. Positive introspection
a ¢ — a da qo

lll. Negative introspection
B a qﬂ — a - a qﬂ

Theorem. |, |l, and lll are
true everywhere in a
model iff agents’ relations
in that model are
equivalences

Equivalence
condition on
models



Axiomatisation of EL

Propositional tautologies

Ao -y - (e - L,w
P — @ Reflexivity

Theorem. EL is sound
and complete

Theorem. Complexity of

a? 7 Ll

, @ Transitivity SAT-EL is PSPACE-

=1 Clqo_)

a

complete

-], ¢ Euclid

From @, ¢ — y infery

From @ infer

a®?

Satisfiability: for a given ¢, determine whether there is a M

such that M, F ¢

Halpern, Moses. A guide to completeness and complexity for modal logics of knowledge and belief, 1992.



Axiomatisation of EL

Theorem. EL is sound

Propositional tautologies and complete

Jo—w - e - L,y

«? — @ Reflexivity Theorem. Complexity of
, @ — L1, L1, @ Transitivity SAT-EL is PSPACE-
-9 - [0, -, Euclid complete
From ¢, ¢ — yinfery Theorem. Complexity of
From @ infer | |, @ MC-EL is P-complete

Model checking: for a given ¢ and M, determine whether M, F ¢

Halpern, Moses. A guide to completeness and complexity for modal logics of knowledge and belief, 1992.



Overview of EL

Extends propositional logic with constructs | |, ¢ that

mean agent a Q

Interpreted on that consist of states,
equivalence relations for each agent, and truth
assignment of atomic propositions

Knowledge is assumed to be , and obey
and

EL allows one to reason not only about knowledge of
, but about as well



Further research in EL

More appropriate notions of
Knowledge and belief of
Applications to

Epistemic analysis of , €.g. gossip protocol
and dining cryptographers

, €.g. BDI architecture and epistemic planning

And so on and so on and so on and so on...
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Public Announcement Logic



Card Example

Three agents, , and , have each drawn one
card from a deck of {' Q &}, and then says that she
does not have clubs

M

C4Mr\)
%A“/

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 4. 2008.



Card Example

Three agents, Alice, . and Carol, have each drawn one
card from a deck of {@@ & &}, and then Alice says that she
does not have clubs

b

(o a—{s @

Initial situation
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Card Example
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Card Example

Three agents, , and , have each drawn one
card from a deck of {. Q &}, and then says that she
does not have clubs
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Card Example

Three agents, , and , have each drawn one
card from a deck of {. Q &}, and then says that she
does not have clubs

M™%
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Card Example

Three agents, , and , have each drawn one
card from a deck of {. Q & }, and then says that she
does not have clubs

—(9+4)
i N
(404} ¢

M™%

)

says that he now knows that has clubs: [ |, &.
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Card Example

Three agents, , and , have each drawn one
card from a deck of {. Q & }, and then says that she
does not have clubs
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Card Example

Three agents, , and , have each drawn one
card from a deck of {' Q &}, and then says that she
does not have clubs
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[y]: after of i, @ is true
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Card Example

Three agents, , and , have each drawn one
card from a deck of {. Q & }, and then says that she

does not have clubs
M ™%

S[ ) a ( ) M F[~&,][ 1, (W, A, A D)
% 3 M;* E[, (W, A8, A &)
(
G
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Card Example

Three agents, , and , have each drawn one
card from a deck of {' Q &}, and then says that she
does not have clubs
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Card Example

Three agents, , and , have each drawn one
card from a deck of {. Q &}, and then says that she
does not have clubs
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Card Example

Three agents, , and , have each drawn one
card from a deck of {. Q & }, and then says that she
does not have clubs
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Card Example

Three agents, , and , have each drawn one
card from a deck of {. Q & }, and then says that she
does not have clubs
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[y]: after of i, @ is true
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Public Announcement Logic

Language of
PAL

PAL S @ =ploeleAne)|U,ellele

| M E [wle iff M, F yimplies M E ¢
Semantics | w
M E (o iff M, F wand M/ E @

Updated model LetM =(S,~,V)and ¢ € LA Z. An
M? is a tuple (S, ~? , V%), where
e SP={se€S|IM,F @};
* ~a =~ N(STXSY),
» V%(p)=V(p)n§?.

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 4. 2008.



Overview of PAL So Far

. IS an event of all agents publicly and
simultaneously learning some true piece of information

* Public announcements are not necessarily speech acts,
they can be acts of publishing, posting, sharing, etc.

. . public announcements do not necessarily remain
true after being announced. ‘My birthday is in November,
and you don’t know this’

e How much do they add, compared to the
standard EL?
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Properties of Public

Announcements
Consider the validities (laws) of PAL Example
plp < (p - p) [Lp1= 0y g

|y o (¢ - ~lely)
lpl(y A y) < (loly Alely)
o,y < (¢ - L, lely)
pllyly < (o A [qo]l/f])()

These rewriting rules decrease the
complexity of a formula
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Consider the validities (laws) of PAL

Properties of Public
Announcements

Example

o]~y < (¢ = ~leply)
[qol(l/f/\)() < ([ply A lely)

These rewriting rules decrease the

- ; —4
— —
- ; -4

e (p—

< oly)

lwly < (o A [qo]l/f])()

complexity of a formula

[

P =

P — 7l

P

aP =

P — (

Pl

b4

b4

bl

aP =

Any

p (

Pl19)

P~ Q)

with the translation?

Theorem. Any formula with public announcements can be
iInto a formula without them



Axiomatisation of PAL

Theorem. PAL and EL

Axioms of EL .
are equally expressive

lplp < (¢ — p)

[Cﬂ] < (@ = lely) Theorem. PAL is sound
Pl Ay < (ely Alely) and complete

el v < (¢ — L, loly) - Coroloxity of
* PEN A eorem. Complexity o
pllyly < (o Alelyly) SAT-PAL s PSPACE.

From ¢ infer [y/]¢ complete

Lutz. Complexity and Succinctness of Public Announcement Logic, 2006.
Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 4. 2008.



Axiomatisation of PAL

Theorem. PAL and EL

Axioms of EL .
are equally expressive

lplp < (¢ — p)

[Cﬂ] < (@ = lely) Theorem. PAL is sound
Pl Ay < (ely Alely) and complete

el v < (¢ — L, loly) - Coroloxity of
* PEN A eorem. Complexity o
pllyly < (o Alelyly) SAT-PAL s PSPACE.

From ¢ infer [y/]¢ complete

Theorem. Complexity of
MC-PAL is P-complete

Van Benthem, Kooi. Reduction axioms for epistemic actions, 2004.

Lutz. Complexity and Succinctness of Public Announcement Logic, 2006.
Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 4. 2008.
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Action Models



Card Example

There is a card lying face down on a table that can be either
Yordh. and see the card but do not know its suit.

(0} ——(4)

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
M have looked at the suit of the card.
S@ a,b t@ Let’s take a moment
to meditate on
‘suspects’...

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
M have looked at the suit of the card.
S@ a,b ’@ Alice could have
seen @, &, Or
nothing (she did not
: t look)
9 o
1T

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yord. and see the card but do not know its suit.
Then walks out, and coming back suspects that
M have looked at the suit of the card.
S@ a, b ’@ Alice could have
seen @, &, Or
nothing (she did not
look)
S b t
4 o And she knows what
\ she did!
’ Whereas for Bob, all
. T these opportunities
are possible

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.

Then walks out, and coming back suspects that
M have looked at the suit of the card.

S@ a,b t@ We have something

that looks like a
model... an

N !

S b t

\d o Action models can represent
] T Bob suspects that Alice

knows the suit of the card

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either
Yord. and see the card but do not know its suit.
Then walks out, and coming back suspects that
have looked at the suit of the card.

S@ a,b ’{ Q) Let’s execute action model

N in model M

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
have looked at the suit of the card.
M A
s a,b
) &)
N

the

S b t
9 o
X / What is the case In
1T

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
have looked at the suit of the card.
M A
s a,b
) 4 "3
N

S b t
| o
X / What should hold
according to the
T

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
have looked at the suit of the card.
M A
s a,b
@ @ (s, s)(::) (, t>D
N

S b t
' ‘ (s, t)D (2, ) D
! o) )

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
have looked at the suit of the card.
M !
s a,b
@ @ (s, s)D (, t>D
N

S b t
4 o (s, t)@ (1, s) @
! o 1)

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
have looked at the suit of the card.
M s a,b J
@ @ (s,8) ? (1)
J .
N . bt Can Alice distinguish these two
4 [ outcomes?
) / What is sufficient for her to
distinguish the two states?
u
T

RO

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
have looked at the suit of the card.
M A
s a,b
) &) = )
N

T (s, u)@ ? (t, u)@

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
have looked at the suit of the card.
M A
s a,b
) &) = )
N

L Vo)

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
have looked at the suit of the card.

M A

s a,b

) &) e 2w

J .

N

S b t
¥ [ What about Bob?

L Vo)

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Card Example

There is a card lying face down on a table that can be either

Yordh. and see the card but do not know its suit.
Then walks out, and coming back suspects that
M have looked at the suit of the card.
(w)——{a) -
(s,) b 1)
J .
N

(S’ U) b (ta U)
! o ——a

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Action Model Logic

Lan%cllgeof AML 3 ¢ =:=p|-@|(@Ap)| 0| [NJp

An N is a tuple (S, ~ , pre), where
e S #£ @ is a set of states;
e R:A — 2°%%is an indistinguishability
function with each R , being an equivalence
relation;

o pre: S — £ is the precondition function.

Action model

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Action Model Logic

Language of
AML

AML > @ :=pl|loel@Ae)|,e|[Nde

M,k [N(o iff M, F pre(t) implies M{\ , F ¢
Semantics | &
M_E (N, iff M, F pre(t) and M(S,t) 7
M, E [yle iff M, E wimplies MY E ¢

Semantics PAL
M_E (y)p it M. Eyand M/ E @

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Action Model Logic

Language of
AML

AML > @ :=pl|loel@Ae)|,e|[Nde

M, E [N]e iff M, F pre(t) implies M(':,',t) F @

Semantics
M E (N, iff M, F pre(t) and M(';',t) F @
Let M =(S,~,V)and N = (S, R, pre). An
M is a tuple (SN, ~N , VN), where
e SN={(s,t)|s €S, te S, M F pre(t) };
o (s5,1) ND (u,v) iff s ~, uand tR v;
e (s,t) € VN(p)iffs € V(p).

Updated model

Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Overview of AML So Far

. allow modelling of plethora of epistemic
events

. of an action model is done via a cross product
with a given epistemic model

What do you think, how do action models stand related to
public announcements?

Public N N = (is},
announcement [ {sRss | a € A},

of ¢ pre(s) = @)



Overview of AML So Far

o allow modelling of plethora of epistemic
events

. of an action model is done via a cross product
with a given epistemic model

e Action models
e S00000....

e How much do we get, compared to the
standard EL?



Overview of AML So Far

o allow modelling of plethora of epistemic
events

. of an action model is done via a cross product
with a given epistemic model

e Action models
e S00000....

e How much do we get, compared to the
standard EL? Again,



Axiomatisation of AML

Theorem. AML and EL

Axioms of EL .
are equally expressive

Nilp < (pre(t) — p)
_th] < (pre(t) — [N y) Theorem. AML is sound
[NJ(wr A ) < ([N Jw A [NJy) and complete

[N L, ¥ < Th Complexity of
eorem. Complexity o
< (pre® = N\ O INJWY)  SAr-AML is NEXPTIME.

tR u complete

[NJIOly < [N O ly
From ¢ infer [N, ]y

Theorem. Complexity of
MC-AML is PSPACE-

complete

De Haan, Van de Pol. On the computational complexity of model checking for DEL with S5 models. 2021.
Aucher, Schwarzentruber. On the complexity of dynamic epistemic logic. 2013.
Van Ditmarsch, Van der Hoek, Kooi. Dynamic Epistemic Logic, Section 6. 2008.



Actions Models vs. Public
Announcements

So, both AML and PAL are as expressive as EL via
reduction axioms

But than public
announcements...

And they indeed are! In a way...

On the one hand, we saw that for each public
announcement there is an action model that results in the
same updated model

On the other hand, action models can make the updated
model bigger than the original one (which announcements
cannot do)

Thus...



Actions Models vs. Public
Announcements

Theorem. Update expressivity of AML is strictly greater
than that of PAL



Beyond Announcements
and Action Models

PAL and AML are but only two representatives of DELSs.
We can have so much more!

Ontic changes

Adding and removing arrows

Communication within groups of agents

Everything above in the context of group knowledge

And so on and so on and so on and so on...
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Part IV

Current Research Directions

l. Quantification in DEL

Il. Theory of Mind



Quantifying Over Updates

Update

Existence: Having a starting configuration M and a property @
we would like to have, that results

in configuration N satisfying @



Quantifying Over Updates

/ ( *_
Update 2 ( gﬂ )
- Update 3 »( (p )

Universality: Having a starting configuration M satisfying @, we
would like to ensure that result iIn some

configuration N satisfying ¢




Quantifying Over Public
Announcements

M

(D @: There is a public announcement, after which ¢ is true



Quantifying Over Public

Announcements
M
S'¢ MV

(D @: There is a public announcement, after which ¢ is true



Quantifying Over Public

Announcements
M
S'¢ MV

| !]: After all public announcements, @ is true



Quantifying Over Public

Announcements
M
S'¢ M7

| !]: After all public announcements, @ is true



Quantifying Over Public

Announcements
M
MT
S'¢

| !]: After all public announcements, @ is true



Card Example

There iIs an announcement such that knows the deal,
and and Carol do not

M/&( @a(«)\

[ r\]
AV
\[*Ja v /

M, E (1), deal A =[], deal A = [].deal)
Q=@ VO)IAN(S.VY)




Card Example

There 1Is an announcement such that

and and Carol do not

knows the deal,

M E (1)([] deal A -

pdeal A = [ |.

@ :=(®, V)N (D.VY)



Card Example

There iIs an announcement such that knows the deal,
and and do not

Y

=
()\
(319

M, E (1), deal A =[], deal A = [].deal)

Q= ®,VO)AN(S.VY)

M




Card Example

After any announcement, has one of the cards

e
C/ 3@
< N
k[@a v /

M, E[!](®, Ve, Ve)
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Card Example

After any announcement, has one of the cards

M, E[!](®, Ve, Ve)



Card Example

After any announcement, has one of the cards

M, E[!](®, Ve, Ve)



Arbitrary PAL

Language of APASL D@ :=plplAe) |, e|lele| e

APAL

M _E [g iff Vpy € PAZL|: M,
M E (D iff dy € PAL): M,

Semantics

Some validities

= lyle

(W) — (He [ — ¢

- (W)@

(N < H(NHe Dl < [NhHe

Quantification is restricted to formulas of PAL in order to avoid

circularity

Balbiani et al. ‘Knowable’ as ‘Known After an Announcement’, 2008.



Why Quantification in DEL?

e Verification of and of a system

Functionality. There is a protocol that allows agents to
achieve their goals



Why Quantification in DEL?

e Verification of and of a system

Security. No matter what agents do, they cannot reach
some undesirable state



Why Quantification in DEL?

e Verification of and of a system

 Epistemic

Epistemic planning. Given a set of allowed actions,
agents are able to construct and execute a plan based on
these actions



Why Quantification in DEL?

e Verification of and of a system
 Epistemic

e Protocol

Protocol synthesis. Given a goal state, provide an action
(or their sequence), that takes any give state to the goal
one



Why Quantification in DEL?

e Verification of and of a system
 Epistemic

* Protocol

e Capturing the notion of in philosophy

Knowability. Every true statement is knowable, in
principle



Why Quantification in DEL?

e Verification of and of a system
 Epistemic

* Protocol

e Capturing the notion of in philosophy

e And so on and so on and so on and so on...

Knowability. Every true statement is knowable, in
principle



APAL versus PAL

Theorem. PAL and EL are equally expressive

What do you think about APAL versus PAL?

The easy direction. XA L C AP A FL: APAL
subsumes PAL

The not so easy direction. A AP AL C PAFL?

| !l is quite powerful as it quantifies over

(even those not explicitly present in @)
and over



APAL versus PAL

Theorem. PAL and EL are equally expressive

| !l is quite powerful as it quantifies over

(even those not explicitly present in @)
and over

Theorem. APAL is more expressive than PAL and EL

There are , hence we have to find
a proper axiomatisation...



Axiomatisation of APAL

Language of
APAL

Semantics

Axioms of EL and PAL

APAL S ¢ :=p|-@|(@Aep)|

[l — [w]e withy € PAL

From {n([ywle) |y € PA L}

2l ole| e

M,sE[!lp iff Vee PAL . M,s E [y]ep

Infinite number of premises

n(lynle) nlwsle) nllysle) - - -

infer n([!]p) n([!le)

We call such a rule

Balbiani, Van Ditmarsch. A simple proof of the completeness of APAL, 2015.



Axiomatisation of APAL

Axioms of EL and PAL

[y — [v]e withy € PAL

From {n([yle) |y € AL}
infer n([!]¢)

Theorem. There is a sound and complete infinitary
axiomatisation of APAL

Open Problem. Is there a finitary axiomatisation of
APAL?

Balbiani, Van Ditmarsch. A simple proof of the completeness of APAL, 2015.



Overview of APAL

Theorem. APAL is more

Axioms of EL and PAL expressive than PAL

[Ne = [w]e withy € PAFL
From {n([y]e) |w € LA L} Theorem. APAL is sound

infer ([ !]p) and complete
Infinite number of premises Theorem. SAT-APAL is
undecidable

]f)pte n Prqblen}[: Istjcherefip Al 2 Theorem. Complexity of
initary axiomatisation o : MC-APAL is PSPACE-

complete

French, Van Ditmarsch. Undecidability for arbitrary public announcement logic, 2008.
Balbiani, Van Ditmarsch. A simple proof of the completeness of APAL, 2015.



Arbitrary AML

Language of dAM P ol N \
AAML S¢i=ploell@eAe) | L@l [Nde|[® lg

M, E[®lp iff YN, { M, E [N]g
M (® )@ iff AN, 7 M F (Nye

Semantics

Preconditions are restricted to formulas without quantification

Hales. Arbitrary Action Model Logic and Action Model Synthesis, 2013.



Synthesis

Synthesis Problem. Given a satisfiable formula @,
construct an action model Ny such that

M E (N3 )@ for any M|

Action models are so powerful that for a fixed goal we can
construct one action model that will reach the goal in any
situation (if the goal is reachable in principle)

? a A
P " P
. J




Synthesis

Synthesis Problem. Given a satisfiable formula @,
construct an action model Ny such that

M E (N3 )@ for any M|

Action models are so powerful that for a fixed goal we can
construct one action model that will reach the goal in any
situation (if the goal is reachable in principle)

N a B

X > w
\_ J

Y




Synthesis

Synthesis Problem. Given a satisfiable formula @,
construct an action model Ny such that

M E (N3 )@ for any M|

Synthesis of such action models is

But what is the connection between the
over action models?

Synthesis Problem*. Given a formula ¢, construct an
action model N{ such that F ( ® )¢ < (N} )¢

Hales. Arbitrary Action Model Logic and Action Model Synthesis, 2013.



Synthesis

Synthesis Problem®*. Given a formula ¢, construct an
action model Ny such that F ( ® )¢ < (NJ )¢

Wait! What??*?
¢ .
Schema ( ® )¢ < (N )@ is a for AAML

This implies something crazy...
Theorem. AAML is as expressive as EL

Theorem. APAL is more expressive than PAL and EL
Theorem. AAML is decidable
Theorem. APAL is undecidable



Interestingness of
Quantification

Quantifying over tautologies F[ T Jo < ¢:

Omnipotent quantifier [Om|: F [Om]p <& T :

Interestingness

Quantifier power [Om]

Adapted from Louwe B. Kuijer



Interestingness of

Quantification
APAL
g: AAML
Quantifier power [Om]

Adapted from Louwe B. Kuijer
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Quantification
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g: AAML
Quantifier power [Om]

Adapted from Louwe B. Kuijer



Interestingness of

Quantification
APAL
g: AAML
Quantifier power [Om]

Adapted from Louwe B. Kuijer



Quantification Overview

. from particular epistemic updates to
(hon-)existence of an update reaching a certain goal

o : APAL is highly complex, while AAML
IS technically the same as EL

e A for DEL-inspired logics. E.g. existence of a
posting strategy in social network logics, etc.

e Lots of tantalising !

Open Problem. Is there a finitary axiomatisation of
APAL?
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Theory of Mind

In epistemic logic
In other words, agents may have

Bob knows that the cat is in the house, and he also
knows that Alice considers it possible that the cat is out

Such a capacity to ascribe mental states to other agents
is called



Sally-Anne Test

e Ability of human (and
artificial) agents to
ascribe false beliefs to
other agents may be
checked by the Sally-
Anne test

* The test was
developed in 1985 by
psychologists
researching cognitive
abilities of children

©

Sally

£

8

Ann

2

20

ot

Sally has a black box
and Ann has a white
box.

Sally has a marble. She
puts the marble into
her box.

Sally goes for a walk.

Ann takes the marble
out of Sally’s box and
puts it into her box.

Sally comes back and
wants to play with her

marble.

Where will Sally look
for her marble?



Sally-Anne Test in DEL

Before we formalise the
test In DEL, look at the
figure and think why

First, we need to be able
to
(e.g. marble
being transferred from one
box to another)

Second, we need to be
able to
, rather than
knowledge

Sally

Ann

2t

2t

2

Sally has a black bo
l~\ l white
bnx.

Sally has a marble. She
puts the marble into
her box.

Sally goes for a walk.

Ann takes the marble
tlllh nd
|t.tt}l..

Sally comes back and
wants to play with her
marble.

Where will Sall)’ look
for her marble?



Sally-Anne Test in DEL

Epistemic  An M is a tuple (S, ~ , V), where
models e S #£ @ is a set of states;
e ~:A — 2°%%is an indistinguishability
function with each ~ , being an arbitrary
relation;

e V: P — 23isthe valuation function.

Ann

and Ann has a white
bt)\

B (_]): the marble is in the black (white) box

Sally has a black box



N,

Sally-Anne Test in DEL

ST\\IHTDW

M (

An N is a tuple (S, ~ , pre), where
e S # @ is a set of states;
e R: A - 2°isan indistinguishability function with each
~  being an arbitrary relation;
e pre: S — Zis the precondition function;

e post:S — (P — &) isthe postcondition function,

assigning in each state postconditions for finitely many
propositional variables.

Sally has a marble. She

puts the marble into
@ her box.

): the marble is in the black (white) box

&
N

(2) \
S




[ |
X Sally has a black box
Sa") 8'\"" and Ann has a white
box.

2

ROk

B (_]): the marble is in the black (white) box




Sally-Anne Test in DEL
NGCE"=

' m &

B (_]): the marble is in the black (white) box




Sally-Anne Test in DEL

(e a
Caor>

((s, ), U <
\_ .- b/

Anne knows the state of
affairs, while Sally believes
that the marble is in the
black box (while it is
actually in the white one)

Sally

Ann

SORISORICS D

Sally has a black box
and Ann has a white
box.

Sally has a marble. She
puts the marble into
her box.

Sally goes for a walk.

Ann takes the marble
out of Sally’s box and
puts it into her box.

Where will Sally look
for her marble?



Social Robotics

* While modelling theory of mind and false-belief tasks in
DEL is interesting in itself, it has some interesting

* |nteraction of human and artificial agents calls for

e https://www.ijcai.org/proceedings/2020/224



https://www.ijcai.org/proceedings/2020/224

Where to Start

Seeing is Believing: Formalising False-Belief
Tasks in Dynamic Epistemic Logic

Thomas Bolander

Technical University of Denmark

Implementing Theory of Mind on a
Robot Using Dynamic Epistemic Logic
Lasse Dissing, Thomas Bolander

.-.q Short video

.-..‘ Long_video



Thank you!



